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ISOMETRY OF RIEMANNIAN MANIFOLDS TO SPHERES

KENTARO YANO & HITOSI HIRAMATU

1. Introduction

Let M be a differentiable connected Riemannian manifold of dimension x.
We cover M by a system of coordinate neighborhoods {U ; x*}, where and in
the sequel indices 4,1, ], k, - - - run over the range {1,2, - - -, n}, and denote
by g, V;, Ky K;; and K the metric tensor, the operator of covariant dif-
ferentiation with respect to the Levi-Civita connection, the curvature tensor,
the Ricci tensor and the scalar curvature of M respectively.

An infinitesimal transformation 2* on M is said to be conformal if it satisfies

(1.1 Logu =V, + Vw; = 208 (v; = 80"

for a certain function p on M, where .#, denotes the operator of Lie deriva-
tion with respect to the vector field » (see [6]). When we refer in the sequel
to an infinitesimal conformal transformation v, we always mean by p the func-
tion appearing in (1.1). When p in (1.1) is a constant (respectively, zero), the
infinitesimal transformation is said to be homothetic (respectively, isometric).

We also denote by %, the operator of Lie derivation with respect to the
vector field p¢ defined by

(1.2) o' =g ="V,
where
(1'3) Vizgitha phZVhpa

g** being contravariant components of the metric tensor. We use g;; and g**
to lower and raise the indices respectively.

The problem of finding conditions for a Riemannian manifold admitting an
infinitesimal conformal transformation » to be isometric to a sphere has been
extensively studied. For the history of this problem, see [7] and [8]. But in
almost all the results on this problem the condition K = constant or ¥ ,K =
O has been assumed. As results in which the conditon .#,K = 0 is not assum-
ed, Sawaki and one of the present authors [12] (see also [11]) proved the fol-
lowing two theorems, in which and the remainder of this section, unless stated
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otherwise, M will always denote a compact oriented Riemannian manifold of
dimension n > 2 admitting an infinitesimal nonhomothetic conformal trans-
formation ».

Theorem A. M is isometric to a sphere if v satisfies

(1.4) gv[gv(uc;uz _n- 2AK) 4 2t D —2) Ava] —0,

n+2 nn + 2)
where
1
(1.5) G, =Ky — T;ngi >
(1.6) G = GG,

4 = gi¥ [, denoting the Laplacian.
Theorem B. M is isometric to a sphere if v satisfies

an  zle(izre - ;—jjdx) + S0t Dazk| =0,

nn + 2)
where
1
(1.8) ijih = Kka'h - mK(ﬁﬁgﬁ - 5?81”') s
(1.9 1Z|P = Z,;," 2%, .

Recently Amur and Hegde [2] (see also [3]) proved the following two theo-
rems.
Theorem C. M is conformal to a sphere if v satisfies &5, ,K = 0 and

(1.10) JM <Gﬁp]pz + 7$D$DPK>dV >0,

Wwhere ¥ 5, denotes the operator of Lie derivation with respect to p* and dV
the volume element of M.

Theorem D. M is conformal to a sphere if v satisfies & 5, ,K=0, £ ,% 5,K
>0and £, |G| =0.

" Very recently the present authors [9] proved the following two theorems.
. Theorem E. M is isometric to a sphere if v satisfies %, |G| = 0 and

Kp;0td
[ o

(1.11) . ‘
> b agke 2)0KL K + (£, K)7dV .
> s jM[np +(n+ 2)p 4 (£.K)
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Theorem ¥. M is isometric to a sphere if v satisfies &, ||Z]} = 0 and
(1.11).

All the above theorems have been obtained by applying the following Theo-
rem G of Tashiro [5].

The purpose of the present paper is to continue the joint work of the pres-
ent authors [9] and to prove some propositions on isometry of Riemannian
manifolds to spheres, in which the operator of Lie derivation .5, plays an
important role. :

In the sequel, we need the following theorems.

Theorem G (Tashiro [5]). If a complete Riemannian manifold M of di-
mension n > 2 admits a complete infinitesimal nonhomothetic conformal trans-
formation v such that

(1.12) Vo — %Apgji =0,

then M is isometric to a sphere.

Theorem H (Yano and Obata [10]. See also Obata [4]). If a complete Rie-
mannian manifold M of dimension n > 2 admits a nonconstant function p
satisfying

K=0,

(1.13) 7 0 — %Apgji -0, %
then M is isometric to a sphere.

We remark here that if a Riemannian manifold M of dimension » is iso-
metric to a sphere, then M admits not only an infinitesimal nonhomothetic
conformal transformation v satisfying (1.1) and (1.12) but also a nonconstant
function p satisfying (1.13).

2. Lemmas

In this section we prove some lemmas which we need in the next section.
M is supposed to be a compact oriented Riemannian manifold of dimension
n in all the lemmas except in Lemmas 4, 5, 6, 9 where M is supposed to be
only a Riemannian manifold.

Lemma 1. If M admits an infinitesimal conformal transformation v, then,
for the function p appearing in (1.1) and for an arbitrary function f on M, we
have

@.1) IM pfdV = —% IY 2o av .

Proof. Since np = IV ,v%, by Green’s theorem (see [7]) we have
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0= jM 7 (fotydV = jM P fdV + nJM ofdV

which proves (2.1).
Lemma 2. In M we have

2.2) [ Zoav = [ 2oty = [ @pwmar

- f fARdV = — f hdfdvV
M M
for any functions f and h on M, where & 5, denotes the operator of Lie deri-

vation with respect to the vector field V*f on M.
Proof. This follows from

0= f V(ThdV = f T HT WAV + f fahav
M M M
0= f VWAV = f T RHTHAV + f ndfav .
M M M
Lemma 3. In M we have
2.3) j UKV = —2 j 00V KdV
M . M
for any function p on M, K being the scalar curvature of M.
Proof. We have (2.3) by putting f = K and 7 = p* in (2.2).

Lemma 4 (Yarno [7]). For arn infinitesimal conformal transformation v in
M, we have

2.4) gkajih = ”—5Zl7jpi + 5;'Ll7k.0-; - Vkphgji + Vjphgki 5
2.5) LKy = —(n — Z)ij — Apgji R
2.6) LK = —2(n — Ddp — 20K .

Proof. We can prove these by using (1.1) and the following formulas on
Lie derivatives :

Lo} = 0o + 0p; — 80"
gkajih == ngz‘{jhi} - ng@{khi} )

{;™} denoting Christoffel symbols formed with g;;.
Lemma 5. For an infinitesimal conformal transformation v in M, we have

@.7) .Gy = —(n — 2>(Vjpi - %Apgﬁ) ,
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gvzkjih = "“‘51’:’71'()«; + B?Vkpi - Vkphgji + Vjphgki

2.8) 2
+ ZAP(az)fgjz' — 0%8kd) »

where G;; and Z, ;" are defined by (1.5) and (1.8) respectively.

Proof. These follow from Lemma 4.

Lemma 6. If M admits an infinitesimal conformal transformation v, then
for any function f on M we have

2.9) A2 f = L Af + 2pdf — (n — 2)p¥f .
Proof. For an infinitesimal conformal transformation v, we have (see [7])

n—2

(2.10) gijkVﬂ)h + KMt + Fr o) =0.

Thus we obtain (2.9) by using (2.10) and the identity
gjiVjVthf — KhZVZ,f = Vh(A.f) s

which holds for any function f on M.
Lemma 7. If M admits an infinitesimal conformal transformation v, then

f 2oL KdV
@in 7" .
n n
= 2 KAV f A2 KdV |
n+4 2 fM P + nt+2Ju o
2.12) f P, LKAV = —f pd% KdV |
M M

and consequently

o1 L[ Lo pKdV

- f pgvAKdV+2_(’1.ﬂf pA% KdV |
nit+2Jx n+2 n

where Dp denotes the vector field p*, and [v, Dp] the commutator of vector
fields v and Dp.
Proof. Using Lemmas 1, 3 and 6, we have

f 0L AKAV = f pA LKV — 2f PAKAV + (n — 2) f 00V KAV
M M M M

— f pdZLKdV + (n + 2)f 0 p KAV
M M
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n+4+2
n

- jM pd LKV — jM L oKV

which proves (2.11). (2.12) follows immediately from Lemma 2.
Lemma 8. In M we have, for any function p on M,

o 1 i
(2.14) .[M Kﬁpjpde = '—? .[M P(gpijz‘)gJ av »

K jiplo'dV
M

(.15) 1 1
- - jM 0L o KAV — o jv (Lo, Kr ) g dV .

Proof. From the definition of K it follows that

_[M oL oKV = .[M ‘OgDP(Kjigji)dV
(2.16)
= jﬂ[ ‘O(gppK‘”)g‘“dV + IM ‘OKjigngjidV .

On the other hand, since p, is a gradient, we have
(2.17) L85 = 27 404 gngji = —ZVjPi 5
(2.18) Vipp’K ;) = Kyip'o' + oKV 7p* + 2pp'V K,

where we have used V7K ;; = $I/,K. Using (2.16), (2.17) and (2.18), we have
(2.14). We also have

Iw 0% p,KdV = .[w 0L 5, (K jun8""8AV
(2.19) : :

= IM o(Z 5, Ky jin)g*"g7'dV — 4 jM oK VipidV

from which and (2.18), (2.15) follows immediately.
Lemma 9. In M we have, for any function p on M,

K070t + %(Ap)z + gppdp—%d,?mp
(2.20) . .
= —(V 0 = —Apgﬁ)(Vjpi - —Apg”) -
: n n)
Proof. Using Ricci formula we have

Agl}pp = gijij(Pz’Pi) = ngij(PiVjPi)
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= 288V WV 000" + 207 ;000"
= ngj(VinPj - Kkijhph)‘oi + 2(’7]‘01')(’7]‘02‘) ,

from which we find (2.20).
Lemma 10. In M we have, for any function p on M,

L{ Kylo'dV + " 1 JM L, dpdV
2.21
@.21) o N 1,
== 00 — —Apgu \ V7o' — —dpg?* )dv
M n n
or
jM K pplpidy — =1 j (dp)av
(2.22)

— J ( 01 — —Apg”)<’7jpi - %Apgﬁ)dv .
Proof. These follow from Lemmas 2 and 9.
Lemma 11. A sphere S™ of dimension n > 2 admits a nonconstant func-

tion p such that

(2.23) Vo, — %Apgﬁ =0,

and consequently

@.24) Lo+ L Kdp =0,V idp+ KV 0 =0,

(2.25) V4o — ldngﬂ- =0.
n

Proof. It is known [11] that $” admits a nonconstant function p such that
(2.23) holds. This shows that the vector field p* defines an infinitesimal non-
homothetic conformal transformation on S$* with the associated function
(1/m)dp. Since K is a positive constant, using (2.6) in which » and p are re-
placed by p* and (1/mn)dp respectively we have the first equation of (2.24) and
therefore dp + (1/(n — 1))pK = ¢ (c: constant), which implies the second
equation of (2.24). From (2.23) and (2.24) we obtain (2.25).

3. Propositions

In this section, we prove a series of propositions in which the operator of
Lie derivation .#,, plays an important role. M is supposed to be a compact
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oriented Riemannian manifold of dimension » admitting an infinitesimal con-~
formal transformation 4 in all the propositions and corollaries except: in Pro-
position 4 where M is supposed to be a complete Riemannian manifold of
dimension » > 2, in Propositions 5, 7 and Corollary 5 where M is supposed
to be a complete Riemannian manifold of dimension » > 2 admitting a com-
plete infinitesimal nonhomothetic conformal transformation 4, in Propositions
6, 12 and 13 where M is supposed to be only a Riemannian manifold, and in
Propositions 8, 10 and Corollaries 1, 3 where M is supposed to be a compact
oriented Riemannian manifold of dimension n.
Proposition 1. For M we have

G.1) j G plo'dV + —j L KV — j @5, LKAV <0 .

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.1) holds if and only if M is isometric to a sphere.
Proof. By using (1.5), (2.6), Lemmas 1 and 2 and the identity

(3.2) f 7 (oo K)dV = f Kou'dV + j oK dpdV + f 0oV KAV =0 ,
M M M M

we have

n—1

I K, 0'0dV — j dpyav
M M

—1

:J G,plo'dV + lj Kpip'dV — j oydV
n nJx ¥

- j G p'odV — ij 0L 5 KdV — lj oKdpdV
M n M n M

~ 12| dprav
n M
= [ Gupiptav + L[ zznkay + __I Up) &, KdV
M n M
- 1 1
_ L{ Cup'dV + IV Lo KAV — JM L, LKAV
Thus from Lemma 10 we obtain

L{ G plo'dV + _—j 2,0, KaV — #J L, LKAV
G.3)
. j (Vjpz. _ _Apgﬂ>(wpi _ _Apgﬁ>dV ,
M n n
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which implies (3.1). If the equality in (3.1) holds, then from (3.3) and Theo-
rem G it follows that M is isometric to a sphere. Conversely, if M is isometric
to a sphere, M admits an infinitesimal nonhomothetic conformal transforma-

tion v such that the equality in (3.1) holds because, for a sphere, G;; = 0 and
K is a positive constant.

Proposition 1 is a generalization of Theorem C.
Proposition 2. If the dimension n of M is greater than 2, then

(3.4) [ ezicray —m-2 | usKav=0.

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.4) holds if and only if M is isometric to a sphere
Proof. First of all we have

Z, |Gl = AZL,G;0G" — 4p |G|} .
Substituting (2.7) in the above equation we find
Ly |GIP = —2(n — 2)G,;Vip* — 4o |G|},

because of G;;,g%* = 0 or

- 2 1 1
3.5)  K,Figt = — GIP ——2* 2, |GIF + LKdp .
(5 Kl = —— " 0l|GI = 5o 2 |Gl + - Kdp

Using (2.18) and (3.5) we have

o o 2

Vi(op’K ;0) = K ;070" — o' |GP
n—2

1

1
LGP + 2, K + oKdp .

Integrating both sides of the above equation over M and using (2.6) and
Lemmas 1 and 2, we obtain

f K plpiav — =1 f (dp)dV
M n M

et jM £,%, |G| dV

_l-f Lo KdV — if oKdpdV — =1 f dpyav
nJx nJx n u

= 2| wicrav -
M

[, 2261 av
n—2

2n(n — 2) Jx
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+ _Ej &Ly KAV — Lj L, LKAV
2n Ju ’ 2n Ju

or, by Lemma 10,
[ 2261y — - Zioukav
~ 2n(n — 2)j (Vjpi - lApgj,.)(prf - iApgﬁ)dV
M n n
+an| FIGPav,
M
which together with Theorem G gives the proposition.
Remark 1. Proposition 2 is a generalization of Theorem D. Using (2.13)

and Lemma 1 we have

J ZLrp. 0 KAV
M
(3.6)

~ 1 j 2. 2 AKAV — 2(”_+L)j L ALKV .
n+2Jx nn + 2) Ju

Therefore Proposition 2 is essentially equivalent to Theorem A. Using (2.6),
(3.2) and Lemmas 1 and 2 we have

j Lrn KAV = n j Koip'dV
M M

(3.7) .
B mL{ [2n0°K* + (n + DpKZ K + (£, K))dV ,

which implies that Proposition 2 is essentially equivalent to Theorem E.
Proposition 3. For M we have

(3.8) f Lot | ZIF AV — 4f Zer poKdV > 0 .
M M

The M of dimension n > 2 admits a nonhomothetic v such that the equality in
(3.8) holds if and only if M is isometric to a sphere.
Proof. First of all we have

Lo ZIf = 2Ly Zy ;M2 — dp | Z)F .
Substituting (2.8) in the above equation we find
Ly Z|P = —8G; Vit — 4o || Z7,

because of iji"‘ =Gy and G;g7" =0, or
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iy 1 1 ; 1
(3.9) Kyript = —=pllZIF — = £ |1 ZIF + —-Kdp .

Using (2.18) and (3.9) we have
. - 1
Vioo'K 1) = Ko’ — 0" | ZIF

1 1 1
— — 0L NZIF + =—p&Lp K + —pKAp .
8P 1Z] 2P Dp pidp

Integrating both sides of the above equation over M and using (2.6) and
Lemmas 1 and 2, we obtain

1

K, plotdv — = j qv
J‘M sp'o'dV M(Ap)

— 2| enzrav — [ 2.2 zpay
L f P, 0, KdV — Lf P, LKAV
n Ju 2n Jx

or, by Lemma 10,

f 2,2\ Z|FdV — 4{ Ly pKdV
M
= 8nj (Vm - —Apgn>(‘7]p - Apg“>dV + 4nf ol Z|Fav,

which together with Theorem G gives Proposition 3.

Remark 2. Using (3.6), (3.7) and (3.8) we see that Proposition 3 is es-
sentially equivalent to Theorems B and F.

Proposition 4. M admits a nonconstant function p satzsfyzng

(3.10) L o8y = 2084 » P K = 0,

¢ being a function on M, if and only if M is isometric to a sphere.

Proof. If M admits a nonconstant function p satisfying (3.10), then, by
Theorem H, M is isometric to a sphere because (3.10) is equivalent to (1.13).
Conversely if M is isometric to a sphere, then M admits a nonconstant func-
tion p satisfying (2.23) and hence (3.10) because K is a positive constant for
a sphere.

Proposition 5. M admits a transformation v such that

L8y = 240811 >

o being a function on M, if and only if M is isometric to a sphere.
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Proof. This follows immediately from Theorem G.

Ackler and Hsiung [1] proved this proposition for a special case in which
the manifold M is compact and oriented and both #,K = 0 and £, K =0
hold.

Proposition 6. For any function p on M we have

3.11) K,p'oh + %(Ap)z + Lodp — %Agppp <0.

The complete M of dimension n > 2 admits a nonconstant function p such
that the equality in (3.11) holds and %, ,K = 0 if and only if M is isometric
to a sphere.

Proof. This follows from Theorem H and Lemma 9.

Propesition 7. M admits a transformation v such that the equality in (3.11)
holds if and only if M is isometric to a sphere.

Proof. This follows from Theorem G and Lemma 9.

Propesition 8. For any function p on M we have

(3.12) J oL KAV + MJ pd20dV > 0 .
M n M

The M of dimension n > 2 admits a nonconstant function p such that &, K
= 0 and the equality in (3.12) holds if and only if M is isometric to a sphere.
Proof. Using Lemmas 2, 8 and 10 we have

J o(Zp,K;:)g7dV + An—1) J pdpdV
M M
(3.13) 1 " 1
= 2J (V 00— —Apgﬁ)(V ot — —Apgﬁ)dV ,
M n n

which together with Theorem H gives Proposition 8.
Corollary 1. M of dimension n > 2 admits a nonconstant function p such
that &, ,K = 0 and

(3.14) Lo Ky = 20— D poe

n2
if and only if M is isometric to a sphere.
Proof. If M is isometric to a sphere, then M admits a nonconstant func-
tion p such that (2.23) holds. Therefore using (2.24) we have
1 2
gDiji = —;Kgngji = —n—KVjpi

2
ne

KA(ogj,[ — —Mdngﬂ 3

nZ
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The “only if” part of the corollary is an immediate consequence of Proposi-
tion 8.

Remark 3. By (2.25) in Lemma 11, (3.14) in Corollary 1 can be replaced
by

2(

(3.15) S K= —22=Vppa,.
n

Proposition 9. For M we have (3.12), and the M of dimension n > 2 ad-
mits a nonhomothetic v such that the equality in (3.12) holds if and only if M
is isometric to a sphere.

Proof. This follows from (3.13) and Theorem G.

Corollary 2. M of dimension n > 2 admits a nonhomothetic v such that
(3.14) holds if and only if M is isometric to a sphere.

Proof. This follows from Lemma 11 and Proposition 9.

Remark 4. By (2.25) in Lemma 11, (3.14) in Corollary 2 can be replaced
by (3.15).

Proposition 10. For any function p on M we have

jM (L0, Kz )8 glidV + j 0%, KdV

+ i(”___l)j pdpdV >0 .
n M

(3.16)

The M of dimension n > 2 admits a nonconstant function p such that &, K
= 0 and the equality in (3.16) holds if and only if M is isometric to a sphere.
Proof. Using Lemmas 2, 8§ and 10, we have

jw oL p Ky )8 g dV + Lj 0L, KdV + MJM od20dV
. P - n A
(3.17) 1 1
=4[ (7o = Lagss)(rior ~ > aps)av
M n n

which together with Theorem H gives the proposition.
Corollary 3. M of dimension n > 2 admits a nonconstant function p such
that ¢, K =0 and

(3.18) LKy jin = _%Azp(gkhgji — 8in€ui) »

if and only if M is isometric to a sphere.
Proof. If M is isometric to a sphere, then M admits a nonconstant func-
tion p such that (2.23) holds. Since K is a positive constant and
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1
— K G — 8ini
wn =D (8xn&j: — &in&xs)

for a sphere, using (2.24) we obtain

2
mK(Vkphgji + gthjPi - V,Hohgkz . gthkpi)

Kkjih =

gDpKkjih =
2
= _;(VlthAngi + gthjViAP — ViV, dogy; — gthkV¢AP) s

which together with (2.25) gives (3.18). The “only if”” part of the corollary
is an immediate consequence of Proposition 10.

Remark 5. As is seen in the proof of Corollary 3, (3.18) in Corollary 3
can be replaced by

prKkjih

3.19
( ) = —%(VthAngi + gV Vido —V¥Vidoegu: — gV oV dp) -

Propesition 11. For M we have (3.16). The M of dimension n > 2 admits
a nonhomothetic v such that the equality in (3.16) holds if and only if M is
isometric to a sphere.

Proof. This follows from (3.17) and Theorem G.

Corollary 4. M of dimension n > 2 admits a nonhomothetic v such that

LK jin
(3.20) _ 1

An —
——«——[fpﬂK + Mdzﬁ](gkhgﬁ — 8418x:)
nin — 1) n

holds if and only if M is isometric to a sphere.

Proof. This follows from Lemma 11 and Proposition 11.

Remark 6. In Corollary 4, we see, by using Lemma 11, that (3.20) can
be replaced by

prKkj{h

__ 1 - .
G20 = o= 1) Ee G — g

*%(VthAPgﬁ + gthjViAP — VthAngi - gthkViAP) .

Proposition 12. If M of dimension n > 2 admits an infinitesimal conformal
transformation v, then

(3.22) (gDpy’iji)gji <0.
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The complete M of dimension n > 2 admits a complete infinitesimal nonho-
mothetic conformal transformation v such that the equality in (3.22) holds if
and only if M is isometric to a sphere.

Proof. By using (2.7) we have

(g'qui)gﬁ == 0 >
and consequently
(gng’UGji)gji = _(vaji)gngji = 2($qui)Vjpi

= —2(n— 2)(17ij. _ %Apgj¢>‘7jpi

It

=201 = (P sps — L8, )(Piot — Lager)
n n
which together with Theorem G gives the proposition.
Proposition 13. For M of dimension n > 2 we have
(3.23) (ZpoZoZijin — 20L 0, Z111)8*"87 <0 .

The complete M of dimension n > 2 admits a complete nonhomothetic v such
that the equality in (3.23) holds if and only if M is isomelric to a sphere.
Proof. From (2.8) it follows that

Loy yin = _gthjpi + gthkpi - Vkphgji + Vjphgkz‘
2
+7Ap(gkhgji - gjhgki) + 2Pijih »
and therefore that
(agvzkjih)gkhgji =0.
Using this we obtain '
(gppgvzkjin)gkhgﬁ
= 4($vzkﬁn)gﬁ‘7kph
1 - 1 .
= —4(n — (7 0. - _Apgﬁ)<wpz — ~dpg")
n n
+ 80Z 8" V* 0" .
On the other hand, since Z,;;,8*"¢’* = 0 we have
(gppzkjm)gkhgﬁ = 4ijz‘hgji‘7k(0h .
Thus
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i
(gppgvzkjih — 2P5«pppzkjih)gk g’

— _4(n — 2)(Vjpi _ —il—Apgﬂ)(Vjpi _ %A‘ogﬂ) ,

which together with Theorem G gives the proposition.
Corollary 5. M admits a transformation v such that

(3.24) L0, LG =0
or
(3.25) L oL vLijin — 20Lp,Zrjin =0,

if and only if M is isometric to a sphere.
Proof. This follows from Propositions 12 and 13.
Proposition 14. For M we have

(3.26) j oL ,G g dV — lj Lo pKdV >0 .
M n M

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.26) holds if and only if M is isometric to a sphere.
Proof. We have, by using G,,g’¢ = 0,

p(gDpGj'l)gji = —pGﬂgngﬁ — 2‘0G]{VJ‘01'

G. -
327 — 2K, 90t — ZpKdp ,
n

or, using (2.18),
L (L G)e? = Vi(ppK ) — K 000 — Loz, K — Lok
7‘0 0,587 = V7 (pp’K ;) — JiPP_EP De —;P Q-

Integrating both sides of the above equation over M and using (2.6), we find

J K plp*dV — n—1 J (dp)yav
s n b

1 1
=1 f o L0,G etV — JM 0L p KdV

—— [ okapay — 2L pyav
nJym n M

= =3[, o @nGerav + | 2.2, Kav
2 M 2}’1 M )
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+ L f Up) 2 KaV
2n Ju
or, by Lemmas 2 and 10,

f o(Z ,G ;)8 dV — l f g[v,DpZIKdV
M n M
(3.28) ) )
= 2J~ (Vjpi - —Apgji)(Vjpi — ——Apgji)dV ,
M n n

which together with Theorem G gives the proposition.
Corollary 6. M of dimension n > 2 admits a nonhomothetic v such that

1
(3.29) pgDpGji = _n—z(g[v,p,:]K)gji s

if and only if M is isometric to a sphere.
Proof. This is an immediate consequence of Proposition 14.
Corollary 7. M of dimension n > 2 admits a nonhomothetic v such that

1

3.30) £p,Gyp= ——
( ) D] n(n + 2)

[E,,AK _ Mdgv[(]gﬁ ,
n

if and only if M is isometric to a sphere.
Proof. This follows from Lemma 7 and Proposition 14.
Proposition 15. For M we have

. 2
(3.301) f L oo Zsig gV — 2 f LKV 20

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.31) holds if and only if M is isometric to a sphere.
Proof. We have, by using Z,,;,8** = G,; and G,;87% = 0,

AL 0, Zijin)8*"8" = —20G ;. p,8" ,
which together with
AL 5,G 8" = —pG L 8"
implies
A Zp,Zy5in)8" 8" = 20(Z5,G;:)8" .

Integrating both sides of the above equation over M and using (3.28), we obtain

i 2
f p(gDkajih)gkthde - —j g[v,pszdV
M nJx
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= 4_[ (Vjpi - lAPgﬁ)(VjPi - lAng'i)dV ’
M n n

which together with Theorem G gives the proposition.
Corollary 8. M of dimension n > 2 admits a nonhomothetic v such that

2

3.32 L 0l iy = ——————
( ) 0L pplikjin nz(n—l)

(«g[u,pp]K)(gkhgji — gjhgki) s

if and only if M is isometric to a sphere.
Proof. This is an immediate consequence of Proposition 15.
Corollary 9. M of dimension n > 2 admits a nonhomothetic v such that

cgl),azkjih.
(3.33) _ _ 2
nn — D(n + 2)

[é”vAK — z%ﬂdgvK] (841851 — 8n8xd) >

if and only if M is isometric to a sphere.
Proof. This follows from Lemma 7 and Proposition 15.
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